Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Ping Zhang,^a Long-Guan Zhu^a* and Hong-Ping Xiao^b

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ^bSchool of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.007 \text{ Å}$ R factor = 0.072 wR factor = 0.144 Data-to-parameter ratio = 11.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(4-carboxybenzenesulfonato)bis(1,10-phenanthroline)manganese(II)

The mononuclear title compound, $[Mn(C_7H_5O_5S)_2(C_{12}H_8N_2)_2]$, was obtained as a second crop of crystals from the hydrothermal reaction of manganese sulfate, potassium hydrogen 4-carboxybenzenesulfonate and 1,10-phenanthroline. The coordination geometry of the Mn^{II} atom is octahedral; each 4-carboxybenzenesulfonate anion retains a proton on the carboxyl group as each coordinates to the metal atom through only one sulfonyl O atom. Intermolecular π - π interactions and hydrogen bonds are observed in the crystal structure.

Received 11 March 2005 Accepted 14 March 2005 Online 25 March 2005

Comment

4-Carboxylbenzenesulfonic acid (H₂cbs) has two coordination sites, and the $-CO_2H$ and $-SO_3H$ groups can be partially or fully deprotonated. To date, only six complexes of the acid have been structurally characterized (Yuan *et al.*, 2001; Xiong *et al.*, 2001; Fan, Xiao, Zhang, Cai & Zhu, 2004; Fan, Xiao, Zhang & Zhu, 2004; Fan, Zhang *et al.*, 2005); the two groups in these are deprotonated. The title complex, (I), is the first complex with the monodeprotonated Hcbs⁻ entity.

The title complex is a monomeric species and the Mn^{II} atom adopts an octahedral geometry made up of four N-atom donors from two 1,10-phenanthroline ligands and two sulfonato O atoms from two Hcbs⁻ ligands (Fig. 1). The geometry is similar to that of the Mn atom in [Mn(phen)₂-(H₂O)₂](ssal)·4H₂O (ssal is the 5-sulfosalicylate dianion), (II)

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

(Fan, Zhu et al., 2005), and bond dimensions involving the Mn atom are similar in both complexes. The Hcbs⁻ ligand, which has its carboxylic group retaining the acid proton, coordinates to the metal atom through one sulfonate O atom. The distances of the six S-O bonds fall within the typical range of S-O bond distances reported for the sulfonate anion (Onoda et al., 2001); the S1–O1 and S2–O6 bonds are longer than the other four as atoms O1 and O6 are involved in bonding. The crystal structure shows $\pi - \pi$ stacking between the Hcbs⁻ anion and the 1,10-phenanthroline ligand; the distance between the two π -systems is about 3.42 Å and the dihedral angle is $5.2 (3)^{\circ}$. The crystal structure also features hydrogen bonds (Table 2) that give rise to the formation of a linear chain motif.

Experimental

A mixture of manganese sulfate monohydrate (0.085 g, 0.49 mmol), potassium hydrogen 4-sulfobenzoate (0.120 g. 0.5 mmol), 1.10phenanthroline (0.098 g, 0.5 mmol) and water (15 ml) was heated at 423 K for 26 h in a 30 ml Teflon-lined stainless steel autoclave. After cooling the autoclave, a yellow solution was obtained and, after 1 d, pale-yellow crystals separated from solution. The crystals were airsensitive. The filtrate was set aside and the solvent allowed to evaporate at room temperature. After 10 d, pale-yellow block-shaped crystals were obtained; these crystals were air-stable and one specimen was used in the diffraction study.

Crystal data

$[Mn(C_7H_5O_5S)_2(C_{12}H_8N_2)_2]$	Z = 2
$M_r = 817.69$	$D_x = 1.591 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 9.5218 (6) Å	Cell parameters from 3743
b = 13.5515 (8) Å	reflections
c = 13.6083 (8) Å	$\theta = 2.4 - 28.0^{\circ}$
$\alpha = 89.216 \ (1)^{\circ}$	$\mu = 0.58 \text{ mm}^{-1}$
$\beta = 78.692 \ (1)^{\circ}$	T = 295 (2) K
$\gamma = 82.348 \ (1)^{\circ}$	Block, pale yellow
$V = 1706.38 (18) \text{ Å}^3$	$0.35 \times 0.22 \times 0.17 \text{ mm}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\rm min}=0.823,\ T_{\rm max}=0.908$ 9038 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.072$ wR(F²) = 0.144 S = 1.255920 reflections 502 parameters H atoms treated by a mixture of independent and constrained refinement

5509 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.018$ $\theta_{\rm max} = 25.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -16 \rightarrow 14$ $l = -16 \rightarrow 14$

5920 independent reflections

$w = 1/[\sigma^2(F_o^2) + (0.0374P)^2]$ + 2.6715P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Mn1-O1	2.094 (3)	Mn1-N2	2.287 (3)
Mn1-O6	2.155 (3)	Mn1-N3	2.248 (4)
Mn1-N1	2.241 (3)	Mn1-N4	2.321 (3)
01 Mp1 06	07.0 (2)	O6 Mn1 N4	108.7(1)
O1 = Mm1 = O0	97.0(2)	$N_1 M_{p1} N_2$	100.7(1)
OI = MIII = NI	95.4 (1)	$N_1 - M_{111} - N_2$	75.2 (1)
O1-Mn1-N2	91.4 (1)	N1-Mn1-N3	106.4 (1)
O1-Mn1-N3	159.6(1)	N1-Mn1-N4	165.7 (1)
O1-Mn1-N4	87.1 (1)	N2-Mn1-N3	89.5 (1)
O6-Mn1-N1	85.4 (1)	N2-Mn1-N4	92.5 (1)
O6-Mn1-N2	157.5 (1)	N3-Mn1-N4	72.4 (1)
O6-Mn1-N3	89.8 (1)		

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O4-H4o\cdots O8^{i}$	0.85 (5)	1.88 (4)	2.713 (4)	168 (6)
$O9-H9o\cdots O2^{ii}$	0.84 (4)	1.83 (4)	2.653 (4)	165 (6)

Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, -y, 1 - z.

H atoms were positioned geometrically and were included in the refinement in the riding-model approximation $[C-H = 0.93 \text{ \AA} and$ $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$]. The carboxyl H atoms were located in a difference Fouier map and were refined with a distance restraint of O-H = 0.85 (1) Å and with fixed isotropic displacement parameters of 0.08 Å². Although the data were measured to a 2θ limit of 56.6°, only the intensities below 50° were used in the refinement; the use of all reflections gave a much higher R factor.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Natural Science Foundation of China (No. 50073019) for supporting this study.

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, S.-R., Xiao, H.-P., Zhang, L.-P., Cai, G.-Q. & Zhu, L.-G. (2004). Acta Cryst. E60, m1970–m1972.
- Fan, S.-R., Xiao, H.-P., Zhang, L.-P. & Zhu, L.-G. (2004). Acta Cryst. E60, m1833–m1835.
- Fan, S.-R., Zhang, L.-P., Xiao, H.-P., Cai, G.-Q. & Zhu, L.-G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 69–70.
- Fan, S.-R., Zhu, L.-G., Xiao, H.-P. & Ng, S. W. (2005). Acta Cryst. E**61**, m563–m565.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). *Inorg. Chem.* 40, 516–521.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xiong, R.-G., Zhang, J., Chen, Z.-F., You, X.-Z., Che, C.-M. & Fun, H.-K. (2001). J. Chem. Soc. Dalton Trans. pp. 780–782.
- Yuan, R.-X., Xiong, R.-G., Xie, Y.-L., You, X.-Z., Peng, S.-M. & Lee, G.-H. (2001). *Inorg. Chem. Commun.* **4**, 384–387.