Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Ping Zhang, ${ }^{\text {a }}$ Long-Guan Zhu ${ }^{\text {a }}$ and Hong-Ping Xiao ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.072$
$w R$ factor $=0.144$
Data-to-parameter ratio $=11.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(4-carboxybenzenesulfonato)bis(1,10-phenanthroline)manganese(II)

The mononuclear title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{5} \mathrm{~S}\right)_{2^{-}}\right.$ $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}$], was obtained as a second crop of crystals from the hydrothermal reaction of manganese sulfate, potassium hydrogen 4-carboxybenzenesulfonate and 1,10-phenanthroline. The coordination geometry of the $\mathrm{Mn}^{\mathrm{II}}$ atom is octahedral; each 4-carboxybenzenesulfonate anion retains a proton on the carboxyl group as each coordinates to the metal atom through only one sulfonyl O atom. Intermolecular $\pi-\pi$ interactions and hydrogen bonds are observed in the crystal structure.

Comment

4-Carboxylbenzenesulfonic acid $\left(\mathrm{H}_{2} \mathrm{cbs}\right)$ has two coordination sites, and the $-\mathrm{CO}_{2} \mathrm{H}$ and $-\mathrm{SO}_{3} \mathrm{H}$ groups can be partially or fully deprotonated. To date, only six complexes of the acid have been structurally characterized (Yuan et al., 2001; Xiong et al., 2001; Fan, Xiao, Zhang, Cai \& Zhu, 2004; Fan, Xiao, Zhang \& Zhu, 2004; Fan, Zhang et al., 2005); the two groups in these are deprotonated. The title complex, (I), is the first complex with the monodeprotonated Hcbs^{-}entity.

The title complex is a monomeric species and the $\mathrm{Mn}^{\mathrm{II}}$ atom adopts an octahedral geometry made up of four N -atom donors from two 1,10-phenanthroline ligands and two sulfonato O atoms from two Hcbs^{-}ligands (Fig. 1). The geometry is similar to that of the Mn atom in $\left[\mathrm{Mn}(\mathrm{phen})_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{ssal}) \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (ssal is the 5 -sulfosalicylate dianion), (II)

Received 11 March 2005 Accepted 14 March 2005
Online 25 March 2005

Figure 1
ORTEP-3 view (Farrugia, 1997) of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
(Fan, Zhu et al., 2005), and bond dimensions involving the Mn atom are similar in both complexes. The Hcbs^{-}ligand, which has its carboxylic group retaining the acid proton, coordinates to the metal atom through one sulfonate O atom. The distances of the six $\mathrm{S}-\mathrm{O}$ bonds fall within the typical range of $\mathrm{S}-\mathrm{O}$ bond distances reported for the sulfonate anion (Onoda et al., 2001); the $\mathrm{S} 1-\mathrm{O} 1$ and $\mathrm{S} 2-\mathrm{O} 6$ bonds are longer than the other four as atoms O1 and O6 are involved in bonding. The crystal structure shows $\pi-\pi$ stacking between the Hcbs^{-}anion and the 1,10 -phenanthroline ligand; the distance between the two π-systems is about $3.42 \AA$ and the dihedral angle is 5.2 (3) ${ }^{\circ}$. The crystal structure also features hydrogen bonds (Table 2) that give rise to the formation of a linear chain motif.

Experimental

A mixture of manganese sulfate monohydrate ($0.085 \mathrm{~g}, 0.49 \mathrm{mmol}$), potassium hydrogen 4 -sulfobenzoate $(0.120 \mathrm{~g}, 0.5 \mathrm{mmol}), 1,10-$ phenanthroline ($0.098 \mathrm{~g}, 0.5 \mathrm{mmol}$) and water $(15 \mathrm{ml})$ was heated at 423 K for 26 h in a 30 ml Teflon-lined stainless steel autoclave. After cooling the autoclave, a yellow solution was obtained and, after 1 d , pale-yellow crystals separated from solution. The crystals were airsensitive. The filtrate was set aside and the solvent allowed to evaporate at room temperature. After 10 d , pale-yellow block-shaped crystals were obtained; these crystals were air-stable and one specimen was used in the diffraction study.

Crystal data

```
[Mn( }\mp@subsup{\textrm{C}}{7}{}\mp@subsup{\textrm{H}}{5}{}\mp@subsup{\textrm{O}}{5}{}\textrm{S}\mp@subsup{)}{2}{}(\mp@subsup{\textrm{C}}{12}{}\mp@subsup{\textrm{H}}{8}{}\mp@subsup{\textrm{N}}{2}{}\mp@subsup{)}{2}{}
Mr}=817.6
Triclinic, }P\overline{1
a=9.5218 (6) \AA
b=13.5515 (8) \AA
c=13.6083 (8) \AA
\alpha=89.216 (1) }\mp@subsup{}{}{\circ
\beta=78.692(1)
\gamma=82.348(1)}\mp@subsup{}{}{\circ
V=1706.38(18) \AA \AA
```


$Z=2$

$D_{x}=1.591 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3743 reflections
$\theta=2.4-28.0^{\circ}$
$\mu=0.58 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, pale yellow
$0.35 \times 0.22 \times 0.17 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.823, T_{\text {max }}=0.908$
9038 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.072$
$w R\left(F^{2}\right)=0.144$
$S=1.25$
5920 reflections
502 parameters
H atoms treated by a mixture of independent and constrained refinement

5920 independent reflections 5509 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-16 \rightarrow 14$
$l=-16 \rightarrow 14$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0374 P)^{2} \\
&+2.6715 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.61 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Mn1-O1	$2.094(3)$	$\mathrm{Mn} 1-\mathrm{N} 2$	$2.287(3)$
$\mathrm{Mn} 1-\mathrm{O} 6$	$2.155(3)$	$\mathrm{Mn} 1-\mathrm{N} 3$	$2.248(4)$
$\mathrm{Mn} 1-\mathrm{N} 1$	$2.241(3)$	$\mathrm{Mn} 1-\mathrm{N} 4$	$2.321(3)$
			$108.7(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 6$	$97.0(2)$	$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{N} 4$	$73.2(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$93.4(1)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$106.4(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$91.4(1)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 3$	$165.7(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 3$	$159.6(1)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 4$	$89.5(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 4$	$87.1(1)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 3$	$92.5(1)$
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{N} 1$	$85.4(1)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 4$	$72.4(1)$
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{N} 2$	$157.5(1)$	$\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 4$	
O6-Mn1-N3	$89.8(1)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H4o $\cdots \mathrm{O}^{\mathrm{i}}$	$0.85(5)$	$1.88(4)$	$2.713(4)$	$168(6)$
O9-H9o $^{\mathrm{i}} \mathrm{O}^{\mathrm{ii}}$	$0.84(4)$	$1.83(4)$	$2.653(4)$	$165(6)$

Symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $1-x,-y, 1-z$.

H atoms were positioned geometrically and were included in the refinement in the riding-model approximation $[\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The carboxyl H atoms were located in a difference Fouier map and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and with fixed isotropic displacement parameters of $0.08 \AA^{2}$. Although the data were measured to a 2θ limit of 56.6°, only the intensities below 50° were used in the refinement; the use of all reflections gave a much higher R factor.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Natural Science Foundation of China (No. 50073019) for supporting this study.

metal-organic papers

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P., Cai, G.-Q. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1970-m1972.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1833-m1835.
Fan, S.-R., Zhang, L.-P., Xiao, H.-P., Cai, G.-Q. \& Zhu, L.-G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 69-70.

Fan, S.-R., Zhu, L.-G., Xiao, H.-P. \& Ng, S. W. (2005). Acta Cryst. E61, m563m565.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Onoda, A., Yamada, Y., Doi, M., Okamura, T. \& Ueyama, N. (2001). Inorg. Chem. 40, 516-521.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xiong, R.-G., Zhang, J., Chen, Z.-F., You, X.-Z., Che, C.-M. \& Fun, H.-K. (2001). J. Chem. Soc. Dalton Trans. pp. 780-782

Yuan, R.-X., Xiong, R.-G., Xie, Y.-L., You, X.-Z., Peng, S.-M. \& Lee, G.-H. (2001). Inorg. Chem. Commun. 4, 384-387

